All functions

aes_sp() aes_sp_string() aes_sp_()

Default aesthetics for plotting a hyperSpec object with ggplot2

alr()

[!] Additive logratio transformation

apt()

[!]Additive planar transform

binning()

[!] Signal binning

boot_ci_mean() boot_ci_fun() boot_ci_corr()

Bootstrapped mean and its confidence interval

calculate_performance()

Calculate best berformance measure

center_subtracted_centers()

[!] Calculate common center subtracted group centers of spectroscopic data

class_add()

Add an additional S3 class label to an object

clr()

[!] Centered logratio transformation

colRatios()

[!] Calculate ratios between values of every column pair.

count_spectra()

Summary statistics of factor variable in a hypecSpec object by ID

cpt()

[!] Centered planar transform

createFolds2() stratifiedFolds() createFoldsBS()

DEPRECATED!

cvo_n_folds()

DEPRECATED!

DataSet1

[+] Dataset: a data frame for illustrations

Loadings2 Loadings3 Loadings4 Scores2 Scores3 Scores4 Spectra2 Spectra3 Spectra4

[+] Datasets of simulated spectroscopic data

deprecated

Deprecated functions

doALS2()

[!.] Wrapper function for alternating least squares multivariate curve resolution (MCR-ALS)

expr2text()

[.] Convert `expression` and `call` to text and remove quotes

file

[!] Read header lines of OOI Base32 file

gapDer()

[!] Gap-Segment Derivative

GaussAmp()

[+] Generate Gaussian curves (GaussAmp).

getScores()

[+] Calculate amplitudes of spectroscopic components (a.k.a. scores) and label the resulting object

get_LOF_by_class()

Calculate lack_of_fit (LOF) for spectroscopic data by class

gg_crosstab2()

[!] Plot crosstab for 2 variables in hyperSpec object

has_enough_IDs()

Get names of groups that has enough unique cases.

has_too_few_IDs()

Get names of groups that has to few unique cases.

hy2mat()

Extract matrix from either hyperSpec object or a matrix

hyAdd()

[!] Add a variable to hyperSpec object

hyRm_palette() hyAdd_palette() hyAdd_color()

[+!] Add a variable with color names to hyperSpec object

hyAdd_Labels_PAP_PD_2014()

[+] Add labels to "PAP_PD_2014" and transform the dataset

hyAdd_Labels_TD2009()

[+] Add labels to "TD_2009" dataset

hyAdd_Label_wl() label_wl()

[!] Add a standardised label for x-axis in hyperSpec object

hyDrop_NA()

[+] Remove variables of hyperSpec object that contain only NA values

hyGet_palette() hyGet_palette0()

[+] Get color palette used to create variable'.color'

hyperSpec()

Initialize new hyperSpec object

hy_spc2df()

Return transposed matrix of spectra in hyperSpec object

ilr()

[!] Isometric logratio transformation

ilrBase()

[!] `ilrBase` method for `hyperSpec` object

infoDim()

Calculate information dimension of a matix

ipt()

[!] Isometric planar transformation

IQR_outliers()

Outlier detection with IQR based distances (limits)

ldf() as.ldf()

[!] As long data frame

mad_outliers()

Outlier detection with MAD based distances (limits)

make_table()

[Internal] Make table (from prediction object)

mean_Nsd()

[!] Find spectra that represent mean +/- n standard deiations

measure_bac()

Balanced accuracy (for 2 or more groups)

measure_bac_2gr()

Balanced accuracy (for binary classification)

measure_kappa_tmp()

[Internal] measure_kappa_tmp

measure_tn()

Calculate number of true negatives

measure_tp()

Calculate number of true positives

measure_tpr()

Rate of correctly identified values in a certain group

median_CI()

Confidence interval for median

median_Nmad()

[!] Find spectra that represent median +/- n median absolute deviations (MAD)

merge(<hyperSpec>,<data.frame>)

[!!!] Merge a hyperSpec object and a data frame

Mode()

[.] Compute a mode (most frequent value)

na.replace()

Mask NA values with other symbol

nID_nSp() nID_nObs()

[+!] Calculate number and percentage of unique IDs and observations

normal_var_CI()

Confidence interval for variance (parameter sigma squared) of Noral distribution

palette_PAP

[+] Color palette

parser_1()

[!] Parse a filename

parser_TD2015()

[!] Parse a filename

parse_string()

Parse a string and extract information to a dataframe.

percent2probs()

Converts percentage to perobabilities

performance0()

[.] Cusstomizable function `performance0`: function to create performance objects

get_performance() get_max() AUC() tp() fp() fn() tn() cutoff() Se() Sp() J() Bac() Acc() Kappa() Wkappa() kappa_helper() make_conf_matrix()

Performance measures for ROCR::prediction object

plot_3D() mds2mat() SMACOF2mat() tSNE2mat() make_3D()

[.] Plot 3D scatterplot

plot_colors()

[!] Vizualize colors

plot_hyPalette()

[!] Plot the color palette used in a hyperSpec object

plot_LOF_hist()

Plot histogram of LOF values

plot_LOF_MDS()

Plot MDS of LOF_obj data

plot_LOF_sp()

Plot spectra colored by LOF values

plot_roc()

[.] Plot ROC - sample code

plot_spCompare()

[!] Compare 2 spectroscopic signals

plot_spDiff()

[+] Plot difference between original and reconstructed spectra

plot_spDistribution()

[!] Distribution of spectroscopoc data as percentiles

plot_stacked()

Plot stacked spectra

poisson_lambda_CI()

Confidence interval for parameter lambda of Poisson distribution

prediction0()

[!] Function to create prediction objects

prepare_PAP_RK_2014__MATLAB_failui()

[+] Transform dataset "PAP_RK_2014" and add labels

qplot_confusion()

[!+] Plot a confusion matrix (a.k.a. classification table)

qplot_crosstab() qplot_crosstab_sort() qplot_crosstab0() qplot_crosstab0s()

[!.] Plot a cross-tabulation (classification table)

qplot_infoDim() qplot_screeplot() qplot_scree()

[+] Scree plot with indicated information dimension (ggplot2)

qplot_kAmp() qplot_scores()

[!+] Plot amplitudes (a.k.a scores) of spectroscopic components

qplot_kSp() qplot_kSpFacets() qplot_sp()

[!+] Plot spectroscopic curves and spectral components (a.k.a. loadings)

qplot_prediction() qplot_proximity()

[!!!] Proximity plot created using multi-dimensiolal scaling (MDS)

qplot_resamples()

ggplot Function for Visualizing Resampling Results of Models With 1 Tuned Parameter

qplot_spc() gg_spc()

[!!!] Plot spectroscopic curves

qplot_spDistrib()

[!] Plot distributions of spectroscopic data

check_palette() qplot_spRange() layer_spRange() gg_spRange()

[!] Plot range of spectroscopic data intensities

qplot_spRangeCenter()

[!] Plot mean and range of spectroscopic data intensities

layer_spRangeMean() qplot_spRangeMean()

[!] Plot mean and range of spectroscopic data intensities

qplot_spRangeMedian()

[!] Plot Median and range of spectroscopic data intensities

qplot_spStat() layer_spStat()

[+] Plot a summary statistic of spectroscopic data by group

quality_of_fit() spFitEval()

[!] Calculate quality of fit parameters (for spectroscopic data)

quartiles()

Median and quantiles

read.OceanView.header()

[!] Read header lines of OceanView file

read.OceanView() read.OceanView2() read.OceanView0() read.OceanView.ascii() read.OceanView.ascii2() read.OceanView.ascii0() read.OceanView.ts() read.OceanView.ts2() read.OceanView.ts0()

[!v0.3] Read spectroscopic OceanView file

read.OOIBase32() read.OOIBase32_2() read.OOIBase32_0()

[!] Read data from OceanOptics OOI Base32 ASCII file with header lines

read.sp.csv2()

[!v0.1] Read spectroscopic CSV (comma separated values) file

read3csv2hy()

[+] Read spectroscopic data from 3 CSV files ("data", "wavelengths" and "spectra") to hyperSpec object

read_OOspectra()

Read OceanOptics spectra

reconstructSp()

[+] Reconstruct spectra from loadings and scores (i.e. components and amplitudes)

replace_spc()

[!!!] Replace object$spc and colnames(object$spc)

rmExpr()

[.] Convert expressions in ggplot2 object labels to strings

rm_stripes()

[!] Remove facet stripes from `ggplot2` plot

ROC_() ROC_table() ROC_plots()

[.] Do ROC analysis and plot it's results (ROC_)

roc_extract_info()

[!!!] roc_create_predictor

save_rds_unique()

[~!~] Save object as `.RDS` with unique name (i.e., without overwritting)

sd_outliers() outside_mean_pm_Nsd()

[!] Outlier detection based on standard deviations (sd)

simSpectra()

[!] Simulate spectroscopic data

sortLoadings()

[!+] Process (Sort, flip, name, etc.) spectra of components (a.k.a. loadings)

spHelper

Extension for `hyperSpec` and convenience functions

spStat()

[+] Calculate summary statistic of spectroscopic data for all spectra and by groups

spStat_ci() spStat_ci_corr() ggplot_ci_rez()

Calculate a statistic

spStat_ldf()

Calculate a summary statistic and return long-format data frame

spZone()

[!] Annotate x axis range in ggplot2 graphs

sp_class_perform() sp_class_perform_cv() print.sp_class_perform_cv() print.sp_classif_performance() predict(<sp_classif_performance>) sp_classification_performance() sp_compare_gr_wl() class_perform_sp()

[.!] Compare spectra of groups at each wavelength

sp_data_labels()

Lables for variables derived from spectroscopic data files

sp_filter()

Filter noise form a spectroscopic signal

sp_normalize()

Normalize spectra

sp_normalize2()

Normalize spectra

sp_remove_offset()

Remove offset

stat_chull()

[+] A convex hull layer for ggplot2

subt()

[+] Add bold title and subtitle to a plot

summary_hyData()

[!] Summary statistics of non-spectroscopic data in `hyperSpec` objecet

test_folds_BS() foldTests()

DEPRECATED!

uncall()

[.] Unwrap text from `call` object Assumption: only the second element in a `call` can be text first element is an object of class "name", that can be dropped. This algorithm can loose some text elements.

unGroup()

[!] Mix values of factor variable levels in equal proportions

unipeak()

[+] Find and keep only the highest positive part of a curve

whichOutlier()

[! DEPRECATED] Find indices of rows that contain outlier column-wise outliersscores

x90() x30()

Rotate x axis tick labels