spStat_ci.Rd
### NEBAIGTA ###
spStat_ci(
obj,
FUN = mean,
label = as.character(match.call()$FUN) %if_null_or_len0% "mean"
)
spStat_ci_corr(
obj,
y = NULL,
FUN = mean,
method = c("spearman", "kendall", "pearson")[1],
use = "everything",
conf = 0.95,
R = 1000,
sim = "balanced",
type = c("norm"),
label = paste0(spMisc::fCap(method), "'s corr. coeff.")
)
ggplot_ci_rez(rez, linetype = 1)
hyperSpec object.
a function that takes a vector and results in a single number, e.g., mean, median, etc.
(string) a label for function to be used as column name.
a vector.
a character string indicating which correlation
coefficient (or covariance) is to be computed. One of
"pearson"
(default), "kendall"
, or "spearman"
:
can be abbreviated.
an optional character string giving a
method for computing covariances in the presence
of missing values. This must be (an abbreviation of) one of the strings
"everything"
, "all.obs"
, "complete.obs"
,
"na.or.complete"
, or "pairwise.complete.obs"
.
A scalar or vector containing the confidence level(s) of the required interval(s).
The number of bootstrap replicates. Usually this will be a single
positive integer. For importance resampling, some resamples may use
one set of weights and others use a different set of weights. In
this case R
would be a vector of integers where each
component gives the number of resamples from each of the rows of
weights.
A character string indicating the type of simulation required.
Possible values are "ordinary"
(the default),
"parametric"
, "balanced"
, "permutation"
, or
"antithetic"
. Importance resampling is specified by
including importance weights; the type of importance resampling must
still be specified but may only be "ordinary"
or
"balanced"
in this case.
A vector of character strings representing the type of intervals
required. The value should be any subset of the values
c("norm","basic", "stud", "perc", "bca")
or simply "all"
which will compute all five types of intervals.
a rezult of function spStat_ci_corr
or spStat_ci
rez <- spStat_ci(Spectra2)
rez
#> hyperSpec object
#> 3 spectra
#> 2 data columns
#> 501 data points / spectrum
qplotspc(rez)
#> Warning: Function 'qplotspc' is deprecated.
#> Use function 'qplotspc' from package 'hySpc.ggplot2' instead.
#> https://r-hyperspec.github.io/hySpc.ggplot2
ggplot(Spectra2) + geom_line()
#> Warning: Function 'chk.hy' is deprecated.
#> Use function 'assert_hyperSpec' instead.
data <- hy_spc2df(rez)
ggplot(data,
aes_string(x = "wl",
y = names(data)[3],
ymin = "ci_lower",
ymax = "ci_upper")
) +
geom_ribbon(alpha = 0.2) +
geom_line(linetype = 2)
#> Warning: `aes_string()` was deprecated in ggplot2 3.0.0.
#> ℹ Please use tidy evaluation idioms with `aes()`.
#> ℹ See also `vignette("ggplot2-in-packages")` for more information.
ggplot(Spectra2[1:20,,300~400])
#> Warning: Function 'chk.hy' is deprecated.
#> Use function 'assert_hyperSpec' instead.
hyperSpec::aggregate(Spectra2, by = "gr", FUN = mean)
#> hyperSpec object
#> 1 spectra
#> 4 data columns
#> 501 data points / spectrum
set.seed(1)
amzius <- rnorm(nrow(Spectra2))
spektrai <- Spectra2[,,400~500]
set.seed(1)
rez <- spStat_ci_corr(spektrai, y = amzius)
ggplot_ci_rez(rez)