boot_ci_mean.Rd
Function calculates bootstrapped mean (or other function)
and its confidence interval for a vector x
.
boot_ci_mean(x, conf = 0.95, R = 1000, sim = "balanced", type = c("norm"))
boot_ci_fun(
x,
FUN,
conf = 0.95,
R = 1000,
sim = "balanced",
type = c("norm"),
label = as.character(match.call()$FUN)
)
boot_ci_corr(
x,
y = NULL,
method = c("spearman", "kendall", "pearson")[1],
use = "everything",
conf = 0.95,
R = 1000,
sim = "balanced",
type = c("norm"),
label = "corr_coef"
)
a vector.
A scalar or vector containing the confidence level(s) of the required interval(s).
The number of bootstrap replicates. Usually this will be a single
positive integer. For importance resampling, some resamples may use
one set of weights and others use a different set of weights. In
this case R
would be a vector of integers where each
component gives the number of resamples from each of the rows of
weights.
A character string indicating the type of simulation required.
Possible values are "ordinary"
(the default),
"parametric"
, "balanced"
, "permutation"
, or
"antithetic"
. Importance resampling is specified by
including importance weights; the type of importance resampling must
still be specified but may only be "ordinary"
or
"balanced"
in this case.
A vector of character strings representing the type of intervals
required. The value should be any subset of the values
c("norm","basic", "stud", "perc", "bca")
or simply "all"
which will compute all five types of intervals.
a function, that takes a vector returns one number, e.g. mean, median, etc.
(string) a label for function to be used as column name.
a vector.
a character string indicating which correlation
coefficient (or covariance) is to be computed. One of
"pearson"
(default), "kendall"
, or "spearman"
:
can be abbreviated.
an optional character string giving a
method for computing covariances in the presence
of missing values. This must be (an abbreviation of) one of the strings
"everything"
, "all.obs"
, "complete.obs"
,
"na.or.complete"
, or "pairwise.complete.obs"
.
A data frame with bootstrapped mean and its confidence interval.
boot_ci_corr
calculates confidence interval for correlation
coefficient between vectors x
and y
.
set.seed(1)
x <- rnorm(1000, mean = .5, sd = .1)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
set.seed(1)
boot_ci_mean(x)
#> ci_lower mean ci_upper
#> 1 0.4923657 0.4988352 0.5053046
# ci_lower mean ci_upper
# 1 0.4923028 0.4988352 0.5053676
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
set.seed(1)
boot_ci_fun(x, IQR)
#> ci_lower IQR ci_upper
#> 1 0.131046 0.1385801 0.1483449
# ci_lower IQR ci_upper
# 1 0.1307229 0.1385801 0.1486593
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
set.seed(1)
MeDiAn <- median
boot_ci_fun(x, MeDiAn, label = "m")
#> ci_lower m ci_upper
#> 1 0.4896462 0.4964676 0.5026135
# ci_lower median ci_upper
# 1 0.4900485 0.4964676 0.502184
set.seed(1)
x <- rnorm(30)
y <- x - rnorm(30) + runif(30,-2,2)
plot(x,y)
set.seed(1)
boot_ci_corr(x, y)
#> ci_lower corr_coef ci_upper
#> 1 0.4267658 0.6258065 0.860535
# ci_lower corr_coef ci_upper
# -0.1051065 0.243604 0.6067977
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
df <- data.frame(x, y)
set.seed(1)
boot_ci_corr(df)
#> ci_lower corr_coef ci_upper
#> 1 0.4267658 0.6258065 0.860535