An alternative way to summarize non spectroscopic data (in @data slot) in a hyperSpec object.

summary_hyData(object, ...)

# S3 method for default
summary_hyData(object, ...)

# S3 method for hyperSpec
summary_hyData(sp, ..., unique_ID = FALSE)

Arguments

object

an object for which a summary is desired.

...

further parameters to be passed to function summary.

sp

hyperSpec object.

unique_ID

(FALSE | character) either variable name that contain ID numbers (to select only the first rows with unique ID) or FALSE (default) to use all rows.

Value

A table with summary statistics.

Details

If class of summarized object is:
- "hyperSpec", lablels of variables (slot @label) are used as headers of columns.

- not "hyperSpec", the function behaves in a similar way as function summary. The differences are indicated in section "Examples".

See also

Examples


library(spHelper)
library(pander)


# Summary of "hyperSpec" object
 summary_hyData(Spectra2)
#> Warning: Function 'chk.hy' is deprecated. 
#> Use function 'assert_hyperSpec' instead.
#>  gr     class  
#>  A:52   K :50  
#>  B:55   l :30  
#>  C:43   N :19  
#>         S1:51  


# Summary of "hyperSpec" object + `pander` (useful if `knitr` is used)
 summary_hyData(Spectra2) %>%  pander
#> Warning: Function 'chk.hy' is deprecated. 
#> Use function 'assert_hyperSpec' instead.
#> 
#> --------------
#>   gr    class 
#> ------ -------
#>  A:52   K :50 
#> 
#>  B:55   l :30 
#> 
#>  C:43   N :19 
#> 
#>         S1:51 
#> --------------
#> 


# ======= `summary_hyData(sp)` vs `summary(sp$..)' vs `summary(sp)' ========
sp <- Spectra2
labels(sp) <- list(gr = "--- Group ---", class = "--- Class ---")

summary_hyData(sp)  # Column names are appropriate values of `labels(sp)`
#> Warning: Function 'chk.hy' is deprecated. 
#> Use function 'assert_hyperSpec' instead.
#>  --- Group --- --- Class ---
#>  A:52          K :50        
#>  B:55          l :30        
#>  C:43          N :19        
#>                S1:51        
#>   --- Group --- --- Class ---
#>    A:52          K :50
#>    B:55          l :30
#>    C:43          N :19
#>    S1:51

summary(sp$..)      # Column names are appropriate values of `colnames(sp)`
#>  gr     class  
#>  A:52   K :50  
#>  B:55   l :30  
#>  C:43   N :19  
#>         S1:51  
#>    gr     class
#>    A:52   K :50
#>    B:55   l :30
#>    C:43   N :19
#>    S1:51

summary(sp)         # Default summary of whole `hyperSpec` object
#> hyperSpec object
#>    150 spectra
#>    3 data columns
#>    501 data points / spectrum
#> wavelength:  [integer] 300 301 ... 800 
#> data:  (150 rows x 3 columns)
#>    1. gr: --- Group --- [factor] range  A B C 
#>    2. class: --- Class --- [factor] range  K  N  S1 l  
#>    3. spc:  [matrix, array501] range  -6.421769 -4.649723 ... 447.9696 
#>   hyperSpec object
#>   150 spectra
#>   3 data columns
#>   501 data points / spectrum
#>   wavelength:  [integer] 300 301 ... 800
#>   data:  (150 rows x 3 columns)
#>   1. gr: --- Group --- [factor] B B ... A
#>   2. class: --- Class --- [factor] N l ... S1
#>   3. spc:  [matrix501] 159.8996 139.9296 ... 12.11558

# ======= Summary of factor variables in a data frame ======================
# (if printed using function `pander` there are differences in column
# `Species` ):

iris[,4:5]  %>%  summary         %>%  pander
#> 
#> -------------------------------
#>   Petal.Width       Species    
#> --------------- ---------------
#>  Min.  :0.100     setosa :50   
#> 
#>  1st Qu.:0.300   versicolor:50 
#> 
#>  Median :1.300   virginica :50 
#> 
#>   Mean :1.199         NA       
#> 
#>  3rd Qu.:1.800        NA       
#> 
#>  Max.  :2.500         NA       
#> -------------------------------
#> 
iris[,4:5]  %>%  summary_hyData  %>%  pander
#> 
#> -------------------------------
#>   Petal.Width       Species    
#> --------------- ---------------
#>  Min.  :0.100     setosa :50   
#> 
#>  1st Qu.:0.300   versicolor:50 
#> 
#>  Median :1.300   virginica :50 
#> 
#>   Mean :1.199                  
#> 
#>  3rd Qu.:1.800                 
#> 
#>  Max.  :2.500                  
#> -------------------------------
#>