The main functions for ROC analysis

print(<as_str>) print(<roc_df>) print(<roc_opt_result>) print(<roc_info>) roc_analysis()

Carry out the ROC analysis

print(<manyroc_result>) roc_manyroc()

Carry out the manyROC analysis

roc_manyroc_cv()

Carry out the manyROC analysis with cross-validation

roc_predict()

Predict outcome for new data

roc_predict_performance_by_gr()

Calculate perfornamce for each pair of groups

roc_merge_manyroc_cv_results()

Merge 2 lists with manyROC CV results

sp_manyroc_with_cv()

Do manyROC analysis with cross-validation for hyperSpec object

print(<hide_it>) sp_manyroc_with_cv_by_variable()

Do manyROC analysis with cross-validation for hyperSpec object for each variable

Management functions for ROC objects

roc_get() roc_get_all_results() roc_cutoff() roc_tp() roc_fn() roc_fp() roc_tn() roc_sens() roc_spec()

[!] Access elements of roc_result_list object

Functions for cross-validation (CVO) ojects

cvo_create_folds() print(<cvo>)

Create a cvo (cross-valitation object)

cvo_get_inds() cvo_get_info() cvo_get_sample_size() cvo_get_seeds() cvo_count_folds() cvo_get_fold_names()

Access information in a cvo object

cvo_test_bs()

[+] Test if data in folds is stratified and blocked

Functions for classification performance

calculate_performance()

Performance measures for two-class classification

roc_extract_info()

[!!!] Extract the main information necessary for prediction

calculate_acc() roc_calculate_acc() calculate_bac() roc_calculate_bac() calculate_auc() roc_calculate_auc() calculate_npv() roc_calculate_npv() calculate_ppv() roc_calculate_ppv() calculate_sensitivity() roc_calculate_se() calculate_specificity() roc_calculate_sp() calculate_youdens_j() roc_youdens_j() calculate_kappa() roc_calculate_kappa() calculate_wkappa() roc_calculate_wkappa()

[!!!] Performance measures

measure_kappa()

Cohen's kappa

measure_wkappa()

Weighted Cohen's kappa

Helper and utility functions

add_class_label() remove_class_label()

Manage S3 class labels

get_var_values()

Get vector of variable values

parallelSetSeed()

Set seeds for reproducible parallel computing with 'parallelMap' package

Datasets

fluorescence

Dataset of simulated fluorescence spectra

Other functions

manyROC

ManyROC -- tools for ROC analysis