R/print-methods.R
, R/sp_manyroc_with_cv_by_variable.R
sp_manyroc_with_cv_by_variable.Rd
[!!!] // No description yet //
For reproducible results in parallel computing, set seed with
parallel::clusterSetRNGStream(iseed = x)
(where x
is your seed) (and not with set.seed
) as package
parallelMap is used for paralellization.
# S3 method for hide_it print(x, ...) sp_manyroc_with_cv_by_variable( Spectra, variables_to_analyze, k_folds = 3, times = 10, seeds = NULL, kind = NULL )
x | an object used to select a method. |
---|---|
... | further arguments passed to or from other methods. |
Spectra |
|
variables_to_analyze | ( |
k_folds | (positive |
times | (positive |
seeds | ( Each seed will be passed to |
kind | character or |
A list with results
[!!!] Description needs more specification.
[!!!] The seeds nust be at least of length 6 and meet other
requirements for "L'Ecuyer-CMRG"
random number
generator.
[!!!] At the moment Seeding section needs revision if
it is necessary to use
"L'Ecuyer-CMRG"
(pseudo)random number generator as
set.seed()
does not work with
parallelMap package.
Instead parallel::clusterSetRNGStream(iseed = x)
(where x
is your seed) should be used with
parallelMap to get reproducible results.
library(manyROC) fluorescence$ID <- 1:nrow(fluorescence) sp_manyroc_with_cv_by_variable( fluorescence[, , 500 ~ 501], c("gr", "class"), k_folds = 3, times = 2)#>#> $n_included #> gr class #> 1 150 150 #> #> $ind_included_rows #> gr class #> 1 TRUE TRUE #> 2 TRUE TRUE #> 3 TRUE TRUE #> 4 TRUE TRUE #> ... ... ... #> 147 TRUE TRUE #> 148 TRUE TRUE #> 149 TRUE TRUE #> 150 TRUE TRUE #> #> #> $cvo #> *** First non-empty element: *** #> --- A cvo object: ---------------------------------------------------- #> indices stratified blocked cv_type k repetitions sample_size #> Train TRUE FALSE Repeated k-fold 3 2 150 #> ---------------------------------------------------------------------- #> #> *** Other elements are not shown *** #> #> #> $results #> grouping set fold compared_groups feature median_neg cutoff #> 1 gr training Rep1_Fold1 A vs. B 1 339 320 #> 2 gr training Rep1_Fold1 A vs. C 1 339 343 #> 3 gr training Rep1_Fold1 B vs. C 1 330 342 #> 4 gr training Rep1_Fold2 A vs. B 1 338 334 #> ... ... ... ... ... ... ... ... #> 213 class test Rep2_Fold3 K vs. S1 2 NA 329 #> 214 class test Rep2_Fold3 l vs. N 2 NA 337 #> 215 class test Rep2_Fold3 l vs. S1 2 NA 342 #> 216 class test Rep2_Fold3 N vs. S1 2 NA 327 #> #> median_pos tp fn fp tn sens spec ppv npv bac youden kappa auc #> 1 330 15 21 6 28 0.42 0.82 0.71 0.57 0.62 0.24 0.24 0.62 #> 2 344 16 13 12 22 0.55 0.65 0.57 0.63 0.60 0.20 0.20 0.50 #> 3 344 16 13 10 26 0.55 0.72 0.62 0.67 0.64 0.27 0.28 0.61 #> 4 332 25 12 17 18 0.68 0.51 0.60 0.60 0.59 0.19 0.19 0.55 #> ... ... ... ... ... ... ... ... ... ... ... ... ... ... #> 213 NA 9 8 6 11 0.53 0.65 0.60 0.58 0.59 0.18 0.18 NA #> 214 NA 4 2 6 4 0.67 0.40 0.40 0.67 0.53 0.07 0.06 NA #> 215 NA 12 5 6 4 0.71 0.40 0.67 0.44 0.55 0.11 0.11 NA #> 216 NA 8 9 3 3 0.47 0.50 0.73 0.25 0.49 -0.03 -0.02 NA #> #> #> $variables_included #> [1] "gr" "class" #> #> $variables_errored #> character(0) #> #> $error_messages #> *** First non-empty element: *** #> NULL #> #> *** Other elements are not shown *** #> #>